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SUMMARY

A two-dimensional model for the simulation of solute transport by convection and diffusion into shallow
water flow over variable bottom is presented. It is based on a finite volume method over triangular
unstructured grids. A first-order upwind technique, a second order in space and time and an extended
first-order method are applied to solve the non-diffusive terms in both the flow and solute equations and
a centred implicit discretization is applied to the diffusion terms. The stability constraints are studied and
the form to avoid oscillatory results in the solute concentration in the presence of complex flow situations
is detailed. Some comparisons are carried out in order to show the performance in terms of accuracy of
the different options. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the modelling of passive solute transport by shallow water flows, for low concentrations, the
solute dynamics does not influence the flow behaviour [1]. It has been previously studied [2] that,
despite the widespread tendency to the use of a simple sequential decoupled resolution algorithm,
as in the context of semi-Lagrangian methods [3, 4], it is preferable, in the context of Eulerian
conservative upwind schemes, to use a coupled formulation for the advective part. Second-order
schemes for the coupled system are the next step towards an improved solution specially when
there is an interest in the accurate tracking of a localized initial solute distribution transported
by the flow. However, it is common in the literature to speak of the convenience of applying
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second-order schemes to the complete two-dimensional (2D) set of dynamic equations including
source terms, non-linearity, irregular geometries and dry areas when the property of second order
of accuracy of those schemes is only ensured for the simple case of a scalar linear homogeneous
equation in one dimension. Accuracy, conservation and numerical stability are central properties
of a numerical method and must be carefully considered when trying to understand how they
interfere with each other.

Oliveira and Fortunato [5] tested 10 numerical schemes in an Eulerian–Lagrangian control
volume finite element model over 2D test cases of varying complexity finding that the method of
choice depends on the problem being solved and on the grid resolution.

Begnudelli and Sanders [6] modelled shallow water flow and scalar transport over arbitrary
topography using a second-order upwind scheme and involving wetting/drying fronts and reported
that scalar predictions cannot be accurately predicted as undershoots and overshoots were generated
even in cases with initial constant values of scalar concentration, requiring water depth and scalar
concentration tolerances to avoid an excessive mass error.

In this work, a continuation of a previous effort on the development of conservative upwind
schemes for triangular meshes using first-order methods limited or not by the Courant–Friedrichs–
Levy CFL<1 [7] restriction [8] over irregular and dry geometries that do not affect the size of the
allowable time step or the quality of the solution [9] and their extension to second order of accuracy
[10] is presented. In Murillo et al. [9] it was realized that the solute transport advancing fronts
in the shallow water body require special numerical treatment in some cases, particularly when
the solute concentration discontinuity is located at the same place as a water depth discontinuity.
Although the numerical solutions for the conserved variables supplied by the numerical scheme
are always monotone, this is not the case for the solute concentration. This is true when using
a first-order scheme but also, and even more difficult to cure, when moving to a second-order
approach.

The interest of this work is focused on the rigorous comparison of all the options in order
to ascertain the true effect of using a second-order representation. For that purpose, steady and
unsteady test cases have been selected with smooth and discontinuous solutions.

2. GOVERNING EQUATIONS

The solute transport and water flow under shallow conditions can be formulated by means of the
depth-averaged set of equations expressing water volume conservation, solute volume conservation
and water momentum conservation. Following Murillo et al. [2], the system of partial differential
equations will be formulated here in coupled form as follows:

�U
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+ �F(U)
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+ �G(U)

�y
=T(U) (1)
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where h is the water depth, g is the acceleration of the gravity, qx = uh, qy = vh the unit discharge
components, with (u, v) the averaged components of the velocity vector u along the x and y
coordinates, respectively, and � is the depth-averaged concentration.

The source terms are the bed slopes of the bottom level z,

Sox = − �z
�x

, Soy = − �z
�y

(3)

the friction losses, written in terms of the Manning’s roughness coefficient n [11–13]

S f x = n2u|u|
h4/3

, S f y = n2v|u|
h4/3

(4)

and the solute concentration diffusion, where K is an empirical dispersion matrix that should not
be confused with the turbulent diffusivity. In general, K incorporates dispersion due to differential
advection as well as turbulent diffusion [14].

System (2) is time dependent, non-linear, and contains advection, diffusion and source terms.
Under the hypothesis of dominant advection it can be classified and numerically dealt with as
belonging to the family of hyperbolic systems, The mathematical properties of (2) include the
existence of a Jacobian matrix, Jn , of the projected flux (En) defined as

Jn = �(En)

�U
= �(F)

�U
nx + �(G)

�U
ny (5)

where n is a unit vector indicating a certain direction. This Jacobian can be used to form the basis
of the finite volume upwind numerical discretization that will be outlined in the next section. There
n will be the unit normal to the cell side and (En) the normal flux.

3. NUMERICAL MODEL

The existence of the Jacobian matrix and the differential relation among conserved variables, fluxes
and Jacobian allows a local linearization of the form

�(En)k = J̃n�Uk (6)

that will be applied in the context of a finite volume formulation at every cell edge k separating
cell i and j . As suggested by Roe [15] the matrix J̃n has the same shape as Jn but is evaluated
at an average state defined by the edge average quantities ũ= (̃u, ṽ), c̃ and �̃, which must be
calculated according to the set of the matrix properties [2]. The eigenvalues of J̃n(Ui ,U j ) are

�̃
1 = ũn + c̃, �̃

2 = ũn, �̃
3 = ũn − c̃, �̃

4 = ũn (7)

and the corresponding eigenvectors
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The difference in vector U across the grid edge is projected onto the matrix eigenvectors basis so
that, the difference at the edge k of cell i is �Ui,k = ∑4

m=1 (�̃e)mi,k , so that the coefficients �m are

�1,3 = �h

2
± 1

2̃c
(�q − ũ�h)n, �2 = 1

c̃
(�q − ũ�h)nt, �4 = � (h�) − �̃(�h) (9)

where q= (qx , qy), n is the unit normal vector pointing outward to cell i and nt is the unit
tangential vector to the edge, nt = (−ny, nx ) and all the spatial increments represent differences
between the neighbour cells and cell i , � fi,k = f j − fi .

For this reason, (6) becomes �(En)k = ∑4
m=1(̃��̃e)mi,k .

The diagonalization matrices of J̃n = P̃K̃P̃−1, where K̃ is a diagonal matrix consisting of the
eigenvalues given in (7), are:

P̃=

⎛⎜⎜⎜⎜⎜⎝
1 0 1 0

ũ + c̃nx −c̃ny ũ − c̃nx 0

ṽ + c̃ny c̃nx ṽ − c̃ny 0

�̃ 0 �̃ 1

⎞⎟⎟⎟⎟⎟⎠ , P̃−1= 1

2̃c

⎛⎜⎜⎜⎜⎜⎝
−ũn + c nx ny 0

2(̃uny − ṽnx ) −2ny 2nx 0

ũn + c −nx −ny 0

−2�̃ c̃ 0 0 2̃c

⎞⎟⎟⎟⎟⎟⎠ (10)

They can be used to upwind the rest of the terms in the equation, considering them all as source
terms. The bed and friction source terms are expressed as −�∇z and �∇H , respectively, while the
diffusion source term is written as Dif=Kh �∇� or Dif= (Difx ,Dify). The normal source difference
is

�Tn= �(S1,S2)Tn=

⎛⎜⎜⎜⎜⎜⎝
0

gh̃ (−�z + �H)nx

gh̃ (−�z + �H)ny

�Dif n

⎞⎟⎟⎟⎟⎟⎠ (11)

where the auxiliary matrices S1 and S2 are evaluated at every interior edge as

S1 = (0, gh̃(−z + H), 0,Difx )
T, S2 = (0, 0, gh̃(−z + H),Dify)

T (12)

and where h̃ = 1
2 (hi + h j ).

All of the source terms can also be projected onto the basis of eigenvectors using the following
coefficients:

b= P̃−1(�Tn) = 1

2̃c

⎛⎜⎜⎜⎜⎜⎝
gh̃(−�z + �H)

0

−gh̃ (−�z + �H)

�Dif n

⎞⎟⎟⎟⎟⎟⎠ (13)

so that the coefficients �m are defined as

�1 = − c̃

2
(�z + dnS f ), �1 = − �3, �2 = 0, �4 = �Dif n (14)

where dn is distance between cell centres projected on n [9].
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3.1. First-order approach

The tools presented in the preceding section can be combined to produce the fully upwind first-
order scheme in a form that was already reported for the one-dimensional (1D) shallow water
equations, for instance, in [16] and for the 1D and 2D shallow water equations in [17]. The same
form was adopted for the coupled 2D shallow water/solute transport system and reported in [2].
It is formulated as follows:

Un+1
i =Un

i −
NE∑
k=1

4∑
m=1

((̃�
m−

�m − �m−)̃em)ni
lk
Ai

�t (15)

where lk is the k edge length and Ai the area of cell i . This scheme is based on condition (6)
where the negative part of

�̃
±m = 1

2 (̃�
m ± |̃�m |) (16)

and that of

�Tn±
k = P̃(I ± |K̃|K̃−

) P̃−1�Tn=
4∑

m=1
�m±̃em (17)

are the only one used to update every cell [2].
The expression in (15) corresponds to a fully upwind first-order scheme but is not appropriate

for the discretization of the diffusive term. The discretization indicated by (11) and (13) means that
diffusion is controlled by the eigenvalue associated with ẽ4, �̃4 = ũ n or, otherwise, that diffusion
is neglected in any direction different from the normal advection velocity. This leads to incorrect
results. We propose that the diffusion term is extracted from the upwind scheme and, within the
context of a finite volume method, first transformed into a contour integral over the cell edges∫

�i

�∇(Kh �∇�)��=
∫

��i

(Kh �∇�)n dl (18)

so that it can be approximated as

NE∑
k=1

(
Kh̃

��

dn
n
)
k
nklk (19)

which is a second-order approach on a quadrilateral structured grid, and has been adapted to the
triangular geometry. Using a splitting technique, in a first step, scheme (15) can be applied to the
non-diffusive system, that is, using:

b= P̃−1(�Tn) = 1

2̃c

⎛⎜⎜⎜⎜⎜⎝
gh̃ (−�z + �H)

0

−gh̃ (−�z + �H)

0

⎞⎟⎟⎟⎟⎟⎠ (20)

After solving the non-diffusive system in a first step and obtaining a predicted value of the conserved
variables, that will be denoted �∗ for the solute concentration, the final value of �n+1 including
diffusion is computed by means of an implicit method over the diffusion term in a second step.
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The numerical diffusion step becomes unconditionally stable, as the resolution matrix is positive
definite, so finally the time step used depends only on the value of CFL as if only advection was
involved. Then,

(h�)n+1
i − (h�)∗i

�t
Ai =

NE∑
k=1

(
K h̃

��

dn
n
)n+1

k
nklk (21)

where hn+1
i = h∗

i . (21) in cases of hn+1
i �= 0 can be rewritten as

�n+1
i =�∗

i +
NE∑
k=1

(
(Kn)n

h̃lk
hi dn Ai

�t

)n+1

k
��n+1

k = �∗
i +

NE∑
k=1

Cn+1
i,k ��n+1

k (22)

where each coefficient Cn+1
i,k is known. Finally:

�n+1
i = �∗

i +∑NE
k=1 Cn+1

i,k �n+1
k

1 +∑NE
k=1 Cn+1

i,k

(23)

As each Cn+1
i,k �0 the system of equations is unconditionally stable. It can be easily solved using

an iterative scheme [2], assuming that in the initial step �n+1
i = �∗

i .

3.2. Second-order approach

A second-order upwind approach for the non-diffusive system can be based on the so-called
MUSCL–Hancock scheme [18] formulated as based on the first-order scheme presented in the
previous section but achieving better accuracy by means of two steps. In the first step, the solution
must be linearly reconstructed by cells using the Li gradient vectors

Ui (x, y)=Ui (x0, y0) + r(x, y)Li =Ui,0 + r(x, y)Li (24)

The slope of these gradient functions is limited according to the maximum limited gradient (MLG)
and MLG–Wierse limiting functions [19, 20] then intermediate values Un+1/2

I,k are re-calculated at
a half time step at cell edges as

Un+1/2
I,k =Un

I,k −
NE∑
k=1

(�Enk − �Tnk)nI i,k
lk
Ai

�t

2
(25)

which is equivalent to redefining the interpolation function in each cell. Figure 1 illustrates the
cell-wise linear reconstructions and clarifies the meaning of the notation. For more details see [10].
The updated variable is constructed in a second step as

Un+1
i =Un

i −
NE∑
k=1

(�Enk − �Tnk)
n+1/2,−
J I,k

lk
Ai

�t −
NE∑
k=1

(�Enk − �Tnk)
n+1/2
I i,k

lk
Ai

�t (26)

where �En+1/2
J I,k =En+1/2

J,k − En+1/2
I,k and �En+1/2

I i,k =En+1/2
I,k − En

i,k , with an upwind part (first term)
and a central part (second term). The above described (21)–(23) implicit procedure for the diffusion
term discretization must be then used as stated.
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Figure 1. Cell geometry parameters (left) and linear representation by cells (right).

3.3. Numerical stability

When analysing both first- and second-order approaches for the non-diffusive system in Sections 3.1
and 3.2 the conditions to preserve the sign and the monotonicity of the variables in the presence
of source terms and dry/wet fronts are relevant. For the shallow water equations alone, these were
studied in detail in [10]. Now these conditions must be extended to the new conserved variable,
the solute mass (h�), and, nonetheless, our interest is also to enforce the good properties to the
primitive variable �, guaranteeing that

�min
k ��n+1

i ��max
k (27)

where �max
k = max{�i,0,� j,0}k and �min

k = min{�i,0, � j,0}k in all situations and under both first-
order and second-order accuracy. The properties of the coupled Jacobian matrix guarantee (27) in
the presence of an initial constant solute concentration, but this property does not hold in general.

In [10], the second-order approach (25) was rewritten as follows:

Un+1
i =Un

i −
NE∑
k=1

N�∑
m=1

(�∗�U)mJ I,k −
NE∑
k=1

N�∑
m=1

(�∗�U)mI i,k (28)

where N� is the number of eigenvalues, N� = 4 in our case, and

�mJ I,k = �m,∗
J I,k

(Ai/ lk)
�t, �mI i,k = �m,∗

I i,k

(Ai/ lk)
�t (29)

with

�̃
∗
J I,k = �̃

−
J I,k�J I,k, �J I,k = 1 −

(
�

�̃�

)−

J I,k
, �̃

∗
I i,k = �̃

−
I i,k�I i,k, �I i,k = 1 −

(
�

� �̃

)−

I i,k
(30)

in order to study the influence of the source terms in the stability condition. It was stated that the
stability condition for the explicit time integration was

�t =CFL�tmax, CFL� 1
3

�tmax = min{�tk}k=1,Nedge, �tk = Amin,k

maxm{�m,∗
k,max}lk

, m = 1, . . . , 4
(31)
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with Amin,k = min{Ai , A j }, the minimum area of the two cells sharing edge k, and �m,∗
k,max =

max{|�∗
J I,k |, |�∗

I i,k |, |�∗
k |}, considering that the coefficients �mk are positive. When �mk <0 the source

terms dominate over the flux differences and a coefficient � based on the specific necessity of
preserving the sign over the solution in the s component, expressed as

Un+1
s,i �0, Un

s,i ,U
n
s, j = 1,2,3�0

Un+1
s,i �0, Un

s,i ,U
n
s, j = 1,2,3�0

(32)

was introduced so that

�tk = �
Amin,k

maxm{|�m,∗
k |}lk , � = mini, j {|Us,i |, |Us, j |, |�Us |}

|�Us | (33)

When moving to the coupled set of water flow and solute transport equations, � is defined with
the same purpose in this case as:

� = min{�h, �h�}

�h = min{hi,0, h j,0, |�hk |}
|�hk | , �h� = min{(h�)i,0, (h�) j,0, |�(h�)k |}

|�(h�)k |
(34)

In Murillo et al. [10], when analysing second-order approach observing the conservation and
positivity of the water depth, the numerical scheme was reduced to first order in those cases where
0��<1 and �mk <0. When the system of equations is extended to include solute transport the same
conclusions are met. On the other hand, the reduction of the time step when 0<�<1 can be avoided
using a conservative redistribution of the updating contributions for both water depth and solute
mass [9]. In the particular case �= 0 the theory predicts that no flux of information can cross
the edge, acting as a solid wall in wetting/drying fronts. In the presence of solute fronts, that is,
clean/mixed water boundaries with continuous water level surface this leads to unrealistic results in
the solute advance. If this fact is not considered, negative values of solute mass and concentration
can be obtained and the necessity to tune and alter the scheme’s results becomes necessary. This
can be avoided using again a conservative redistribution of the updating contributions [9] that
ensures adequate bounding properties over the solute concentration.

In Murillo et al. [10] interpolation over the water level surface was required in the presence
of variable bed level, and in some special cases the numerical scheme was reduced to first-order
approach. In those cases it is also necessary to enforce first order over the solute mass too.

The value of � is computed as the ratio between the variables h� and h, for both first- and
second-order approximations. If second order is imposed over h and h� the final value of the
solute concentration � depends on the interpolation functions used and unrealistic values of solute
concentration can appear. The oscillations in the solute concentration can be avoided by reducing
the scheme to first order when the solute concentration defined at the edges does not fulfil the
following condition:

�min��I,k��max (35)

where �min = min {�i,0,� j,0} and �max = max {�i,0, � j,0}. In the presence of strong spatial varia-
tions in the water depth this technique is overly restrictive and leads to a first-order solution. When
this option is not desirable, extrapolation of the solute concentration � keeping first order over the

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:661–686
DOI: 10.1002/fld



THE SIMULATION OF SOLUTE TRANSPORT IN 2D SHALLOW WATER FLOW 669

water depth is another possibility. This option provides the most accurate results regarding solute
concentration. As our interest is focused on keeping the maximum accuracy over the transported
solute function the interpolation must be constructed preserving (35).

It must be signalled that the average solute concentration �̃ is independent of the eigenvalues
of the system and has no influence on the fluid dynamics. On the other hand, the flow dynamics
determines the solute concentration map. A solution that provides second order for both the flow
movement and the solute transport is not feasible, and the user has to choose in each case between
the cited strategies.

3.4. Extension of the first order scheme to values of CFL>1

Solute transport processes are usually simulated involving large time scales, and, therefore, it is
important to enlarge the stability region as much as possible. In the context of fixed boundaries
and unstructured triangular meshes, the classical first-order explicit upwind finite volume scheme
is forced to follow the criterion CFL�1.

In [8], the stability region of the first-order upwind finite volume scheme for systems of con-
servation laws was extended to values of CFL greater than one. The basic procedure relies on the
enlargement of the stencil for each different contribution �Um

i,k . When the method is applied to
the shallow water equations, the scheme proves accurate and reduces efficiently the computational
cost. In the case of the coupled shallow water/solute transport equations the definition of the new
Jacobian matrix makes feasible the use of this new upwinding technique.

According to [8] the updating formula in (15) takes the form

Un+1
i =Un

i −
NE∑
k=1

4∑
m=1

(�m�Um + jm�t)nk (36)

where

�m = �m−(lk/Ai )�t, jm = �m ẽm(lk/Ai ) (37)

are defined for the m eigenvalues. Depending on the size of the time step used, a new stencil for
each component of �Uk , �Um

k , is defined, where the number of involved cells is

Nm
k =

−	mk∑
n=0

2n (38)

with 	mk = int(�mk ). As the search of the global time step �tmax involves all the eigenvalues, for
each value of CFL desired the size of the actual global time step must be computed considering:

Am
min,k = min{Ai , A j = 1,Nm

k −1} (39)

For more details, see Murillo et al. [8].
To avoid unrealistic values in the numerical solution of the concentration, a strategy based on

the conservative redistribution of the solute mass fluxes as presented in [9] must be taken into
account. The situations where the concentration is unbounded are well identified by the following
condition at a cell edge:

�̃
−2
i,k = �̃

−4
i,k = (̃un)−i,k = 0, (̃�� − �)−3

i,k >0, �� n
i, j �= 0 (40)
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so that

�̃
1
i,k = (̃un + c̃)i,k>0, �̃

3
i,k = (̃un − c̃)i,k<0

�̃
−1
i,k = 0, �̃

−2
i,k = 0, �̃

−3
i,k <0, �̃

−4
i,k = 0

�̃
1
j,k =−̃�

3
i,k>0, �̃

3
j,k = −̃�

1
i,k<0

�̃
−1
j,k = 0, �̃

−2
j,k<0, �̃

−3
j,k<0, �̃

−4
j,k<0

(41)

In (36), the numerical stencil is enlarged separately for each component �Um
k . This fact introduces

an additional difficulty when trying to adapt the strategy used in Murillo et al. [9] to redistribute
information between cells i and j avoiding at the same time oscillations in the concentration
and preserving conservation. For that reason, a coupled modification of the third approximated
eigenvector is proposed. It is redefined differently depending on the updating cells i and j , so that
the full set of eigenvectors at edge k is

ẽ1i,k =

⎛⎜⎜⎜⎜⎜⎜⎝
1

ũ + c̃nx

ṽ + c̃ny

�̃

⎞⎟⎟⎟⎟⎟⎟⎠
i,k

, ẽ2i,k =

⎛⎜⎜⎜⎜⎜⎝
0

−c̃ny

c̃nx

0

⎞⎟⎟⎟⎟⎟⎠
i,k

, ẽ3i,k =

⎛⎜⎜⎜⎜⎜⎜⎝
1

ũ − c̃nx

ṽ − c̃ny

�̃V

⎞⎟⎟⎟⎟⎟⎟⎠
i,k

, ẽ4i,k =

⎛⎜⎜⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎟⎟⎠
i,k

ẽ1j,k =

⎛⎜⎜⎜⎜⎜⎜⎝
1

ũ + c̃nx

ṽ + c̃ny

�̃

⎞⎟⎟⎟⎟⎟⎟⎠
j,k

, ẽ2j,k =

⎛⎜⎜⎜⎜⎜⎝
0

−c̃ny

c̃nx

0

⎞⎟⎟⎟⎟⎟⎠
j,k

, ẽ3j,k =

⎛⎜⎜⎜⎜⎜⎜⎝
1

ũ − c̃nx

ṽ − c̃ny

�̃VV

⎞⎟⎟⎟⎟⎟⎟⎠
j,k

, ẽ4j,k =

⎛⎜⎜⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎟⎟⎠
j,k

(42)

where to preserve conservation

�̃VV = �̃ j,k + (�̃i,k − �V )
(̃�� − �)3i,k

(̃�� − �)3j,k

(43)

and

�V =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max{�i ,� j } if ��n

i, j<0 and (̃�� − �)−3
i,k >0

min{�i ,� j } if ��n
i, j>0 and (̃�� − �)−3

i,k >0

�̃i,k else

(44)
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This technique will provide accurate and conservative results as will be shown in the Applications
section.

4. APPLICATIONS

4.1. Transient solute transport by a uniform discharge over variable bed elevation

The first test case is concerned with the pure advection of an initial solute distribution by means of
the velocity field corresponding to a non-uniform steady flow characterized by zero roughness and
bi-linear water depth variation. The exact water depth and bottom level distributions corresponding
to that situation are:

h(x, y)= a + qx x + qy y, z(x, y)= − 1

2g

(q2x + q2y ) + 2gh3

h2
(45)

The example presented assumes a diagonal discharge with values qx = 0.1, qy = 0.1 and a = 0.5
over a squared domain 10×10m2, and has been computed using two unstructured meshes, divided
into 2064 and 5702 triangular cells. The boundary conditions are, at the upstream sides (south
and west in the squared domain), the unit discharges and, at the downstream sides (north and
east), the water depth. No diffusion is included and the initial solute concentration distribution
is:

�(x, y, t0) = sin
(
x

10

)
sin
(
y

10

)
(46)

The solution for the solute distribution at later times is obtained from the solute transport equation
written as

h
��

�t
+ (hu) �∇� + �

�h
�t

+ � �∇(hu) = 0 (47)

that, using the water mass conservation becomes

��

�t
+ u �∇� = 0,

d�

dt
= 0 (48)

which means that the solute concentration is constant along the characteristic curves

dx

dt
= u = qx

h
,

dy

dt
= v = qy

h
(49)

As the flow trajectories are known, the advected concentration at a future time t0 + T can be
computed

�(x ′, y′, t + �t) = �(x, y, t) (50)

where

x ′(t + T ) = x(t) +
∫ t+T

t
u dt, y′(t + T ) = y(t) +

∫ t+T

t
v dt (51)
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Figure 2. (a) Exact solute concentration; (b) first order with CFL= 2; (c) second order using MLG; and
(d) second order using MLG–Wierse.

The particular form of the bed level and water depth functions (45) in this test case correspond to a
nearly horizontal water surface level. In consequence, it is almost indifferent to calculate the second-
order solution by interpolating the solute concentration or by interpolating the conserved variable.
Figure 2(a) shows the solute concentration analytical solution at t = 50s in three-dimensional (3D)
view for the mesh with 2064 cells. Figure 2(b) shows the numerical solution obtained using first
order with CFL= 2, and Figure 2(c) and (d) the numerical solutions using the second order over
the solute concentration and limiters MLG and MLG–Wierse, respectively, with CFL= 1

3 . Visual
comparison shows the better quality of the almost identical second-order solutions in this case.
Table I shows a quantitative comparison based on the L1(�) error [21] for the different techniques
in the two different meshes showing that second order leads distinctly to less diffusive solutions
in this test case. When first order is used with different values of CFL, no meaningful differences
are found. The non-linear character of the system of equations used produces a rigid uniformity
in the results independently of the CFL used.

4.2. Transient solute transport by a non-uniform discharge over variable bed elevation

The second test case is devoted again to the pure advection of an initial solute distribution by a
frictionless steady flow over variable bed. In this case, it is characterized by a uniform horizontal
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Table I. L1(�) error for the solute concentration using first and second order.

First order First order Second order MLG Second MLG–Wierse
Cells/L1 (CFL= 1) (CFL= 2) (CFL= 1

3 ) (CFL= 1
3 )

2064 4.463 4.469 1.045 0.909
5702 3.066 3.066 0.676 0.592

Figure 3. (a) Exact solute concentration; (b) first order with CFL= 2; (c) second
order using MLG; and (d) MLG–Wierse.

surface level�(x, y, t) = h + z = 0. The corresponding bed analytical function is

z(x, y)= − h0 + q0
a

sin(a (x − y)) (52)

with unit discharges varying in space as follows:

qx (x, y) = qy(x, y)= q0 cos(a (x − y)) (53)

The schemes are tested using the values a = 2
/(
√
2 30), q0 = 0.05 and h0 = 3 q0/a. The initial

solute distribution, the squared domain size and the meshes are the same as those used in the first
test case. The nil gradient water level surface of this case implies that no meaningful differences
appear between the solute concentration obtained in second order by interpolating the solute
concentration itself or the set of conserved variables. Figure 3(a) shows a 3D view of the analytical
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Table II. L1(�) error for the solute concentration using first and second order.

First order First order MLG–Wierse
Cells/L1 (CFL= 1) (CFL= 2) MLG (CFL= 1

3 ) (CFL= 1
3 )

2064 4.413 4.412 1.452 1.297
5702 2.859 2.859 0.928 0.855

Figure 4. Oblique hydraulic jump.

solution at t = 50s in the mesh with 2064 cells. Figure 3(b) displays the numerical results of solute
concentration at that time using first order with CFL= 2. Figure 3(c) and (d) displays the numerical
results of solute concentration at that time using second order over the solute concentration with
limiters MLG (c) and MLG–Wierse (d). As before, a qualitative improvement can be observed
when using second order. Table II displays the comparison of the L1(�) errors of the numerical
solutions on both grids. The same conclusions regarding accuracy as in the previous test can be
drawn in this case.

4.3. Steady hydraulic jump with steady solute transport over flat and frictionless bed

This test case is used to check the behaviour of the solutions in the presence of a rapidly varying
flow. A supercritical uniform flow, over flat and frictionless bed, is deflected by a solid wall at an
angle � generating an oblique hydraulic jump as shown in Figure 4.

There is an exact relationship between the water depths upstream the shock, h1, and downstream
of it, h2, the Froude number of the incoming flow normal to the jump, Fr1, and the angle formed
by the jump, 

h2
h1

= 1

2

(√
1 + 8Fr21 sin

2  − 1

)
(54)

and there is also an exact relationship between the deflection angle � and the jump angle :

tan �= tan 

√
1 + 8Fr21 sin

2  − 3

2 tan2  − 1 +
√
1 + 8Fr21 sin

2 
(55)
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Figure 5. Exact solution for the solute concentration.

A continuous rate of solute inflow is assumed in a part of the inlet by means of an upstream
boundary condition, defined by the function:

� (x = 0, t) =
{
4, 2�y�3

2, y<2, y>3
(56)

The performance of the gradient slope limiters in the second-order methods is tested by means not
only of the quality of the numerical water surface discontinuity but also by that of a discontinuity
in the solute concentration that must follow the direction of the flow velocity and remain focused
in the absence of diffusion.

The steady flow numerical solution is obtained in a first run from initial values of water depth
h1 and velocity v1, after 10 s of simulation, enough to converge to the steady condition where
the oblique hydraulic jump is developed. In this case, the upstream and downstream depths are,
respectively h1 = 1 and h2 = 1.5 with Fr1 = 2.74. The deflection angle is � = 8.95◦ and the jump
angle is  = 30◦.

In a second run, the solute injection is initiated and the solute is transported along the channel
as a plume that follows the velocity deflection. No diffusion is assumed. Figure 5 shows the
computational domain, 16 m long and 5.5 m wide, discretized in 14 474 triangular cells. It also
displays the jump position and the exact solution.

Figure 6 displays 2D contour plots of the solute concentration using first order with CFL= 3 (a),
second order using the MLG–Wierse limiter over the solute concentration alone (CFL= 1/3) (b),
and second order using the MLG–Wierse limiter over the solute concentration alone (CFL= 1/3)
(c). Second-order approach provides the most accurate results.

Table III shows the numerical L1 error over the solute concentration in order to compare the
efficiency of the different approaches. It can be seen that both the use of second order over the full
set of conserved variables and only over the solute concentration provide more accurate results
than first order as expected.

At the same time, Table III shows that second order only over the solute concentration provides
the best results, although the interpolation over the set of conserved variables does not reduce
strongly the accuracy of the solution. This is a good example of the influence between the conserved
variables when using a coupled formulation.

On the other hand, Table IV compares the error in the water depth numerical solutions when, for
second order of accuracy the interpolation is always performed over the set of conserved variables
including or not the solute concentration.

The quality of the solution for the water depth is strongly reduced when enforcing second order
over the conserved variables including the variable solute concentration as the correct definition
of the mass solute interpolation planes reduces the solution to first-order approach in many cases.
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Figure 6. (a) 2D contour plots of � using first order with CFL= 3; (b) second order over the solute
concentration using the MLG–Wierse limiter (CFL= 1

3 ); and (c) second order over all the variables using
the MLG–Wierse limiter under the same conditions (CFL= 1

3 ).

Table III. L1(�) function using first and second order over the set of conserved
variables and over the solute concentration.

Interpolated First order First order MLG–Wierse
variables/L1(�) (CFL= 1) (CFL= 3) MLG (CFL= 1

3 ) (CFL= 1
3 )

h, hu, hv, h� 14.945 14.944 7.735 8.212
� 14.945 14.944 6.730 7.611
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Table IV. L1(h) function using first and second order over the set of conserved
variables and over the solute concentration.

Interpolated First order First order MLG–Wierse
variables/L1(h) (CFL= 1) (CFL= 3) MLG (CFL= 1

3 ) (CFL= 1
3 )

h, hu, hv, h� 0.895 0.898 0.677 0.721
h, hu, hv (�= 0) 0.895 0.898 0.364 0.491

The error in the solution for both water depth and solute concentration is the same when using
values of CFL smaller or larger than one in first-order approach with independence of the presence
of solute concentration, as expected.

4.4. Instantaneous injection of concentration in a channel with uniform flow

In this test case the influence of the order of approximation and the time step used is evaluated in
the presence of a non-zero diffusion coefficient. The instantaneous injection of a mass M at time
t0 at a point (x0, y0) in an unbounded channel with uniform flow of velocity, u(x, y, t) = (u0, 0),
and water depth, h(x, y)= h0, from a situation of clear water is simulated. The exact solute
concentration variation in space and time is given by [1].

�∞(x, y, t) = M

h0 4
t
√
Kx Ky

exp

(
− (y − y0)2

4Kyt

)
exp

(
− (x − x0 − u0t)2

4Kxt

)
(57)

where Kx and Ky are the coefficients of the diffusion matrix K, defined as

K=
(
Kx 0

0 Ky

)
(58)

The analytical solution for a channel of width B is [22]:

�(x, y, t) =
∞∑

m=−∞
�∞(x, y − mB, t) (59)

A channel 4m long and 1m wide is used to compare the solutions from both first- and second-order
schemes for the advective part combined with an implicit discretization of the diffusion terms.
The coordinate origin is located at the left-bottom corner. The water depth in the entire channel is
h0 = 1 m and the water velocity is u0 = 1 m/s. The mass injected is M = 1.

In the first numerical experiment the initial condition for the concentration is given by the exact
solution (57) evaluated at t = 3s using the hypothesis that the injection is located at x0 =−2m and
y0 = 0.5 m so that the initial � distribution is centred at x = 1 m and y = 0.5 m. The simulation is
carried on from that time up to t = 5s. A constant diffusion coefficient is assumed, Kx= 0.001m2/s,
also Kx= Ky . As in this case the water depth and velocity are uniform and constant in the entire
domain, no differences can be noticed if second order is imposed on the conserved variable h�.
Figure 7 shows the exact solution for the solute concentration distribution at t = 5 s (a), the result
using second order over solute concentration with the MLG–Wierse slope limiter (b), and using
first order with CFL= 3 (c). In this case solute advection is strongly dominant. First order gives
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Figure 7. Kx = 0.001 m2/s, t = 5 s: (a) exact solution; (b) numerical solution using second-order
MLG–Wierse limiter with CFL= 1

3 ; and (c) numerical solution using first order with CFL= 3.

Table V. L1 error and maximum solute concentration for different values of Kx and numerical techniques.

Kx = 0.001 Kx = 0.01 Kx = 0.1

L1 �max L1 �max L1 �max

MLG, CFL= 1
3 0.0676 14.2838 0.0186 1.9521 0.0701 0.5604

MLG–Wierse, CFL= 1
3 0.1029 13.9068 0.0165 1.9557 0.0679 0.5625

First order, CFL= 1 0.5980 7.6234 0.1254 1.6782 0.0825 0.5534
First order, CFL= 2 0.5782 7.7987 0.1283 1.6729 0.0804 0.5547
First order, CFL= 3 0.5696 7.8751 0.1352 1.6600 0.0796 0.5552

a poor representation of the solution. Table V shows how the L1 error is smaller and the solute
concentration peak is higher when enforcing second order than when using first-order approach.

In the second numerical experiment, the initial condition is given by the exact solution with
an injection point located at x0 =−1 m and y0 = 0.5 m, and evaluated at t = 2 s so that the
initial � distribution is centred at x = 1 m and y = 0.5 m. The simulation finishes at t = 4 s. The
diffusion coefficients are constant, Kx = Ky = 0.01 m2/s. Figure 8 shows the exact solution for
the solute concentration at t = 4 s (a), the numerical result obtained using second order over solute
concentration with the MLG–Wierse slope limiter (b), and using first order with CFL= 3 (c). In
this case, first order preserves better the shape of the exact solution compared with the previous
experiment. Table V shows how the L1 error is smaller and the solute concentration peak is higher
when enforcing second order than when using first-order approach.

In the third numerical experiment, the initial condition is given by the exact solution with an
injection point located at x0 = 0 m and y0 = 0.5 m, and evaluated at t = 1 s so that the initial �
distribution is centred at x = 0.5m and y = 0.5m. The simulation ends up at t = 3 s. The diffusion
coefficient in this case is extremely high Kx = 0.1 m2/s and Kx = Ky . Figure 9 shows the exact
solution for the solute concentration at t = 3 s (a), the numerical result obtained using second
order over solute concentration with the MLG–Wierse slope limiter (b), and using first order
with CFL= 3 (c). There is no visual difference when comparing first- and second-order solutions.
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Figure 8. Kx = 0.01 m2/s, t = 4 s: (a) exact solution; (b) numerical solution using second-order
MLG–Wierse limiter with CFL= 1

3 ; and (c) numerical solution using first order with CFL= 3.

Figure 9. Kx = 0.1m2/s, t = 3s: (a) exact solution; (b) numerical solution using second-order MLG–Wierse
limiter with CFL= 1

3 ; and (c) numerical solution using first order with CFL= 3.

Table V shows how the L1 error is still smaller and the solute concentration peak is still higher
when enforcing second order than when using first-order approach, but the differences between
first and second order are not as high as in the other cases.

4.5. 1D frictionless dam break with non-uniform solute concentration over flat bed

The quality of the numerical solutions of the water flow and solute concentration variation in
unsteady flow and in the presence of strong gradients of both water depth and solute mass for
first- and second-order approximations is analysed involving a 1D dam break problem with exact
solution. The discontinuous initial water depth and the initial solute concentration are defined by
the following functions:

h(x)=
{
5, x<0

50, x�0
, �(r) =

{
0, x<0

100, x�0
(60)

where x is the distance from the centre of the domain. Figure 10 shows the exact distribution for
both water depth and solute concentration at the initial time (left) and after 40 s considering no

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:661–686
DOI: 10.1002/fld
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Figure 10. Initial water depth and solute concentration (left) and exact water depth and
solute concentration after 40 s (right).

solute diffusion (right). Not considering that the solute evolution has an influence over the flow
dynamics, the solution corresponds to the ideal dam break wave [23] for water depth and water
velocity plus a discontinuous solute front advancing more slowly than the water front [24].

The numerical solutions have been computed in a squared domain 4000× 4000 m2 using a
triangular unstructured mesh divided into 32 672 cells. When using first-order approach no mean-
ingful differences appear in the solution either for small or large values of CFL as Figure 11(a)
shows. Figure 11(b) and (c) shows the solution obtained by enforcing second order over the
solute concentration and over the set of conserved variables. No visual differences in the solution
are observed. Second order provides more accurate solutions than first order does, although the
accuracy gain is not as effective as in the steady cases.

4.6. Long wave resonance in a circular parabolic frictionless basin with solute

The analytical solution of a long wave resonating in a circular, frictionless parabolic basin was
presented by Thacker [25] for the shallow water equations, where the free surface displacement is
given by

�(r, t) = �0

(
(1 − A2)1/2

1 − A cos�t
− 1 − r2

a2

{
1 − A2

(1 − A cos�t)2
− 1

})
(61)

and the basin shape is given as

z(r, t) =−�0

(
1 − r2

a2

)
(62)

with A= (a4 − r40 )(a
4 + r40 )

−1 and �= a−1
√
8g�0, where �0 is the centre point water depth, r

is the distance from the centre point, a is the radial distance from the centre point to the zero
elevation on the shoreline and r0 is the distance from the centre point to the point where the water
depth is initially nil. Those values are represented in Figure 12(a). The numerical values used for
this test are �0 = 20.0 m, r0 = 1200 m, a = 1500 m. The domain is divided into triangular cells of
l = 25 m generated using the discretization shown in Figure 12(b).
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Figure 11. (a) Solute concentration profile using first order approach; (b) using second order over the
solute concentration; and (c) using second order approach over the set of conserved variables after 40 s.

Figure 12. Sketch of the initial free surface and water depth profile for the parabolic basin test (left) and
detail of the mesh discretization (right).

At the same time, an initial solute concentration is assumed, given by

�(r) =
{
2, r<600

1, r�600
(63)

that is also the exact solution after each period, as no diffusion is considered. Figure 13(a) shows a
3D view of the exact solute concentration, the numerical solute concentration computed with fully
first order (b), the solution for fully second order, that is, over the set of conserved variables (c)
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Figure 13. (a) 3D view of the exact solute concentration; (b) solution for the solute concentration
using first order; (c) solution for the solute concentration using second order over all the variables; and

(d) solution for the solute concentration using second order over the solute concentration after 4T.

Figure 14. Model geometry (left) and detail of the mesh (right).
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Figure 15. (a) Solute concentration computed using first order (CFL= 4) at t = 5 s and (c) at t = 12 s and
(b) using second-order MLG–Wierse over the solute (CFL= 1

3 ) at t = 5 s and (d) at t = 12 s.

and the solution using a second-order representation only over the solute concentration (d) after
4T. Almost no differences appear between the results obtained using first and second order over
the set of conserved variables. The number of limitations required to satisfy a correct construction
of the interpolating planes lead to a severe reduction of the second-order approach. On the other
hand, if second order is only enforced over the solute concentration a marked increment in the
accuracy of the solution is observed.

4.7. Asymmetric dam break in a laboratory model

The following test case for the proposed model deals with the transport of solute by a 2D dam
break flow problem. The dam break flow experiment was carried out at the CITEEC, Coruña,

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:661–686
DOI: 10.1002/fld
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Spain [26]. The set-up consists of a flat bed closed pool divided into two parts (Figure 14 left) by a
removable gate. The experiment was performed for an initial depth ratio of 0.5/0.1m assuming a
Manning roughness parameter n = 0.01. A distribution of solute, not present in the experiment, has
been assumed in this example, where an initial solute ratio of 2.0/1.0 is defined. In this example,
flow is unsteady and both the water level and solute are initially discontinuous. On the other hand,
the flow domain is permanently confined within vertical walls so that the solution is free from any
wet/dry boundary effect.

The mesh consists on 7875 cells. A detail of the spatial discretization can be seen in Figure 14
(right). Figure 15(a) and (c) shows the solutions obtained using first order with approach CFL= 4,
at time t = 5 and 12 s after the gate removal, respectively, while Figure 15(b) and (d) shows the
solutions using second-order approach over the solute concentration 5 and 12 s after the gate
removal, respectively. The complexity of the flow in this case does not allow any remarkable
improvement of the solution when using second-order approach.

5. CONCLUSIONS

A general formulation of finite volume schemes on triangular grids has been presented in order to
study the relative performance of a first-order scheme and aMUSCL–Hancock scheme, theoretically
of second order in space and time accuracy, as applied to unsteady and steady 2D shallow water
flows with solute advection and diffusion in several situations.

As far as the non-diffusive part of the system is concerned, spatial second-order accuracy has
been built using MLG and MLG–Wierse limited cell gradient methods (MUSCL). First order has
been used both in the basic version and in the version extended to values of CFL>1. The diffusion
terms have been discretized using an implicit centred technique.

Only one test case has been used to analyse the behaviour of the numerical solutions in the
presence of physical diffusion. The results confirm that, in the simple conditions of steady uniform
flow a second-order approach produces an improvement in the accuracy of the numerical solution
less noticeable for extremely high diffusion coefficient values.

A brief analysis of the form in which the source terms get involved in the time step restrictions
has been included and extended to the coupled system of shallow flow/solute transport. At the
same time an efficient way to avoid unbounded values of solute concentration within the framework
of the second-order scheme has been presented.

Two test cases of non-uniform steady shallow water flow with smooth water surface and pure
advective transport of an initially sinusoidal solute cloud have been used to demonstrate the
superiority of the second-order technique in the resolution of the solute distribution evolution. The
results are rather similar when using the two options of applying second order over the full set of
conserved variables or only over the solute concentration variable.

In cases of transient shallow water flow over complex geometry and wet/dry fronts the fully
second-order method over all the variables is not the best option to accurately track the solute
evolution. Instead, a first-order representation for all the variables except the solute distribution is
recommended in these cases. The test case of long wave resonance in a parabolic basin has been
useful to see this effect. At the same time, the proposed conservative redistribution strategies have
proved valid and useful to be able to calculate at the standard time step rate.

In the same line, when both the water level and solute distribution are discontinuous in steady
state, our study indicates that numerical results more accurate than first order in all the variables
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cannot be achieved simultaneously. However, a noticeable gain in the quality of the solute results
is obtained by using a second-order representation only in this variable.

In cases of discontinuous unsteady flow, the application of a second-order method does not
bring any improvement in the numerical results. A first-order method provides satisfactory results
and is very competitive when used in the version extended to CFL>1.
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